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Abstract

We consider a variant of the well-known Gauss-Seidel method for the so-

lution of Markov chains in steady state. Whereas the standard algorithm

visits each state exactly once per iteration in a pre-determined order, the

alternative approach uses a dynamic strategy. A set of states to be visited

is maintained which can grow and shrink as tile computation progresses. In

this manner, we hope to concentrate the computational work in those areas

of the chain in which maximmn improvement in the solution can be achieved.

We consider the adaptive approach both as a solver in its own right and as

a relaxation method within the multi-level algorithm. Experimental results

show" significant computational savings in both cases.
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1. Introduction

We are interested in developing efficient methods for computing steady-state solutions of large

continuous-time Markov chains. In particular we are interested in new, improved algorithnls for

general chains with which solutions can be obtained with substantially less effort than using the

standard schenles. We consider in this paper the adaptive Gauss-Seidel (AGS) method as a variant

of the well-known Gauss-Seidel algorithm ((iS) in the form in which it is usually iml)lemented. Our

adaptive relaxation method is based oil that of Riide [7]. Adaptive relaxation dispenses with the

statically ordered processing of states in favour of a dynamic strategy. By making an appropriate

choice of nodes to visit, it is hoped that computations that will have little effect on the solution

can be spared and the attention be concentrated on those areas of the solution vector where the

solution can most efficiently be improved.

We discuss adaptive Gauss-Seidel in two different roles. First we consider it as a solution method

in its own right, i.e. as a direct alternative to the standard (iS scheme. Second we consider its use

as a relaxation method within the recently introduced multi-level algorithm [2]. It is shown that
AGS acquires a particular meaning in this context.

In section 2 we give the problem statement and introduce some notation. In section 3 we

describe and discuss the adaptive Gauss-Seidel algorithm. In section 4 we briefly state the multi-

level method and show the particular meaning of AGS in this context. In section 5 results of

numerical experiments are presented showing the performance of the Gauss-Seidel and multi-level

algorithms both with and without the adaptive modification. It will be shown that the adaptive
approach can lead to improved performance in both cases. In the final section we summarize the

paper.

2. Problem Description and Aggregation Equations

Consider a Markov chain consisting of n states s0...s,,_l.

where p, is the probability of being in state si.

We then have to solve the system of equations

Denote the unknown vector by p,

Pp= 0

with the additional condition
i=n--I

E pi=l
i=0

Note that this equation is usually written as _rQ = 0 for _ = pT and Q = pT, where Q is the
infinitesimal generator matrix.

A coarser representation of the Markov chain described by matrix P may be obtained by ag-

gregation. This means creating a new Markov chain described by a matrix Q with the vector of
state probabilities q, each of whose N states 5'o... SN-1 is derived from a number of states of the

original system. Figure 1 illustrates the situation for an eight-state Markov chain P, where states

are aggregated in pairs to form a four-state coarser level system Q.

In the following we will use the terms fine level and coarse level to refer to Markov chains where

the latter is obtained by aggregation from the former. The relation sk E Si signifies that the fine

level state sk is mapped by the aggregation operation to the coarse level state Si.



P'70 Q30 = PT0* p0 / (p0 + pl)

v Q

(-_ .Figure 1: Aggregation of Markov ,hams

The matrix Q of the aggregated system is chosen as follows :

Z; Z;

Qji = SkES, _Sj
Pk (1)

skESi

This is the classical aggregation matrix. Note that the matrix Q is a function not only of the fine

level matrix P, but also of the fine level solution vector p.

This yields the aggregated equation in the unknown q:

Qq=O
N-I

It can then be shown that

Zqi 1
i=0

qi = _ Pk ,
skES,

i.e. the solution q of the aggregated system truly represents a coarser version of the solution p of the

original problem. The probability of being in state qi is the sum of the probabilities of being in any

of its constituent fine-level states. We use the aggregation equation as a basis for the multi-level

method, whereby we approximate the exact solution values pk in (1) above by values from the
current iterate.

3. Adaptive Relaxation

Gauss-Seidel is an iterative method for the solution of linear systems of equations which proceeds

by successively solving the local equation for each unknown by modifying the value of the unknown

to make its residual equal to zero. The Canss-Seidel method is given in figure 2- The standard
Gauss-Seidel method visits each state exactly once per iteration step. In addition the order in

which states are visited is fixed and in practice is determined largely coincidentally by the order in

which states have been generated. In the case of Markov chains derived from generalized stochastic

Petri-nets (CSPNs) the ordering is a depth-first or breadth-first traversal starting at the state

representing the initial marking.

We may consider the cffcctivcness of the Gauss-Seidel method at any one state si at any time

during the computation to be the amount by which the current solution value Pi changes when



the GS relaxation step is applied to that state only. Thus GS is effective when it is able to

bring about a large improvement in the state's value, and is ineffective otherwise. However, if the

method is converging towards the steady-state solution, then changes in the solution must become

successively smaller. Thus the effectiveness is a relative measure, meaningful only with respect to

the effectiveness at other states of the chain at a given instant during the computation.

Intuition tells us that the effectiveness of GS at any point in thne during the solution process

can vary greatly between different states. In the Markov chain below, for example, there are many

states ['or which the effectiveness is initially zero, i.e. application of GS at these states would not

change the solution at all! Ideally, of coarse, we would like to apply GS to those states where the

effectiveness is highest. In this case, the computational effort would be expended with maximum

efficiency. Conversely we would like be able to pass over states with low effectiveness and not

spend any computational effort on them. As the computation progresses, the effectiveness of

states changes as the values of their neighbours are modified. Unfortunately, of course, we do not

know which states have the highest effectiveness, i.e. the largest residuals_ and finding them would

essentially involve performing (IS at every state, thus destroying the very advantage we were hoping
to achieve.

We must therefore adopt a different strategy, which is derived from that of Riide [7], who applied

adaptive smoothing to the solution of partial differential equations. We introduce a set of states,

called the active set, which is an approximation to the set of states with high effectiveness at the

current stage of the computation. By only considering states from this set for the application of

GS, we hope to concentrate our computational effort in the "hot spots" - those areas in which GS

is able to achieve substantial improvements to the solution.

The adaptive Gauss-Seidel algorithm is given in figure 3_ where M denotes the active set of

states. Since we do not know initially which are the states with high effectiveness, we are forced to

initialize the active set M to include all states in the Markov chain. The main loop of the algorithm

repeats until M has become empty. A state si to be relaxed is chosen and removed from M and

its current solution value stored in a temporary variable t. The relaxation is then performed. If

the change in the solution value exceeds a pre-defined limit e then all states in the chain that are

dire_ctly influenced by state -qi are inserted into M. The motivation for this set update strategy

is that a large Change in state _i changes the residual by a proportionate amount at those states

whose values depend on/_i, and thus it is likely that a high effectiveness is induced there.

Upon termination of AGS, we assume that solving the local equation at any state cannot improve

the solution there by more than an amount proportional to _. Although this means that little

improvement can be achieved locally, this of course tells us nothing about the accuracy of the

solution. We must therefore repeat the procedure with a reduced value of e. We choose a simple

strategy given by the following algorithm:

procedure solve_with_AGS

{_--EO

while llPPlloo> do
adapt ive_Gauss_Seidel (_)

with Ae chosen to satisfy 0 < Ae < 1.



As asimpleexampleweconsidersolvingthebirth/death chainof figure 4 with a length of,t = 33,

a birth rate of A = 49 and a death rate of tt = 50. Setting p = A/it and counting from i = 0, this
chain has the solution

! :-__p/
P{ - 1 -- pn

[f, as is typically the case in practice, we initialize the solution vector to the constant flul('tion

(± L), then we can observe that the application of GS to any state other than s 0 and ,%-1 will
7_' " " " ' ?_,

have no effect, i.e. the computational effort would be completely wasted. Only at the ends of the

chain can an improvement be achieved initially. This is because the initial guess solves the local

equations at every internal state:

,),
We show the history of the active set in figure 5, where the nodes of the chain are plotted vertically

and time horizontally. A cutoff value of e = le - 4 was used. An "X" denotes a state currently

in the active set and a "." a state not currently in the active set, whilst an "O" shows the state

currently being relaxed. During the computation, each node is initially visited once, as all nodes

start out in the active set. However, it can be seen that only at the ends of the chain are nodes put

back into the set and the computation proceeds to treat only nodes 0...4 and n - 5...n - 1. It

is important to realize that this would hold regardless of the size of the chain, thus the proportion

of nodes that would be visited after the initial sweep can be extremely small. Hence this method

achieves the required result: it only expends computational effort in those portions of the chain in

which substantial improvements can be achieved. When the active set has emptied, e is reduced

and the adaptive procedure repeated with the smaller tolerance. Note that we initialize the active

set to include all states of the chain in order to err on the side of safety; in this particular example

we could have achieved essentially the same result at significantly reduced cost by initializing the

active set to just {so, Sn-l}.

4. Multi-Level Solution Algorithm

In this section we briefly review the recently introduced multi-level algorithm, details of which

can be found in [2]. The multi-level algorithm is based on a recursive aggregation of the Marker

chain to obtain approximations of successively smaller dimensions. The algorithm passes through

all levels of the hierarchy of chains in a downward-upward sweep. Solutions on finer levels are used

to construct coarser equations, the approximate solutions of which are used to correct those on the

next finest level. The coarser level equations are the aggregation equations of section 2.

We adopt the following abbreviations for vectors a, b, c 6 IR'n:

a = b • c =- ai = bi * ci, 1 < i < m

a = b/c =_. ai = b,/ci, 1 < i < m

The two-level version of the ML iteration is given by the following sequence of steps.

* Perform GS relaxation on finer level

• Restrict solution to coarse level

= GS(p(O)

-- )k
sk 6S,
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• (',ompute coarse Iov_,l aggreg_tion nJ_Lf.ri×

E _k E l'e_

* Solve coarse equation for q

• COml)ute coarse level correction

• ('oml)ute fine lew'l correction

N-I

i=0

q" = ql#

• /(q.) • .P = =-- Pk = cti

• Apply fine level correction

p(;+_) = p = (;'(_,p*) -_ fj,p,

In this two-level form the method is similar to well-known iterative aggregation/disaggregation

(IAD) methods such as those of Koury, McAllister and Stewart [3] and of Takahashi [9]. The

multi-level algorithm is obtained by recnrsive application of the two-level algorithm to obtain a

solntion to the aggregated equation (3) and is described in algorithmic form in figure 6. We use the

subscril)t l to denote level of representation (l = Imax finest level, l = 0 coarsest level). The coarse

level l - 1 and fine level 1 between which the operators I and R map are identified by appropriate

indices. Note that, because of the recursive nature of the algorithm, the unknowns q*, t] and q7are

represented by the variables P_'-1, /Sl-1 and ift_l, respectively. We allow in genera] the possibility

of applying (IS u times at each level with u > 1, denoted by (IS_.

The aggregation strategy used at present is very simple. It attempts to map pairs of fine level

states that are strongly coupled to a common coarse level state. To achieve this, we loop through

all states of a given level and for each state ._i that has not yet been assigned to an aggregated

state, we choose the unassigned neighbour ._j for which ['ji is maximal. Any states that remain

unaggregated l)y this policy are mapped to an assigned neighbour .s/ for which Pji is maximal.

Thus aggregate(] states are ahnost always composed of fine-level states that are neighbours and

states with the strongest coupling coefficients are aggregated together.

Adaptive ('anss-Seidel has a particular relevance when llse(l as the relaxation component of the

ME algorithm. In order to do this we borrow concepts from the multigrid literature, in particular

[s]. We consider the error ci in the current solntion value/5i in state si

ci = pi - Pi ,

and differentiate between high and low frequency error components, whereby the highest frequency

errors are those that oscillate in size between neighbouring states. Low frequency errors are those

that vary only slowly across the chain. Upon completion of A(;$, we can assume that the magnitude

of high freqnency error components is small everywhere, since no substantial improvements in the

solution can be made locally. Thus we can conclude that the relative magnitudes of all unknowns



with respect to their immediate neighbours are approximately correct, regardless of the absolute
size of the error e in those unknowns.

Consider now the definition of the coarse level matrix in the ML method (2):

E
skES,

Tlle matrix (_ is an approximation to the correct coarse system matrix Q, which is obtained by

setting/5 = p above. Since approximate solutions to the coarse system are used to derive corrections

to the solution at the next highest level, it is clear that the difference between _) and Q may affect

the behaviour of the ML method. In particular, if (_ is a bad approximation, then the coarse level

correction may be extremely inaccurate. We surmise that it is cases such as this which have led

to reports by some authors of divergence of iterative aggregation-disaggregation methods such as

that of Takahashi [9] for some problems.

The quality of (_, i.e. the size of Q - (_, depends on the quantities

Pk
:E '

sk E Si

which is the conditional probability of the Marker chain being in state sk, given that it is in the

aggregate state Si. Thus it is not necessary to know the absolute size of i5 in order to be able to

compute a correct value for _), but it is sufficient to know the relative sizes of all fine-level unknowns

which ar_ aggregated to a common coarse level state. This set of fine-level states is by the definition

of the aggregation strategy always composed of close neighbours and in most cases is a subset of

the set of all immediate neighl)ours of any state. For any fine-level state sj an(] coarse level state

._,', for which holds sj E Si we have as a rule

• c c ¢ 0)

Thus A(;S gives us a means to control the quality of the coarse level matrix by eliminating high-

frequency errors to a controlled tolerance at a possibly greatly reduced cost compared to GS.

5. Experimental Results

Figure 7 shows a multiprocessor system in which the n processors Prl • •. Pr,_ compete for access

to two memory units CM l, CM2 via a common bus. Marsan, Balbo and Conte [4] give a GSPN

model of this multiprocessor (the structure of which is shown it) figure 8) which allows for the

l)()ssil)ility of failure and repair of the processors, the bus and the memory units. The model

allows the computation of the effective utilization of the processors in the presence of failures and

competition for the system resollrces.

Figure 9 shows the computational work of the GS, A(;S, ML-(;S and ML-AGS methods applied

tt) this l)rot)l_,m, where Xl L-CS ( Xl L-:\(7;S ) denotes the multi-level method using standard (adaptive)

(;au.',s-Sei(h'l as a relaxation COlnl)oncn|. \Ve show the total number of millions of floating point

(q)(,rations used as a funclion of problem size measured as the number of processors in the model.

The n_imber ,)f sta_es of the Marker cilains varied from .ql (:2 processors) to 388:t (10 processorsl.

All i)r(d)lenis were solved to an accuracy of ]!Ppl].:. < i( - 9.
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Comparing GS and AGS, we see that we are able to achieve a substantial improvement via the

adaptive strategy. For the smallest problem considered, AGS is a factor of about 3.6 faster (not

discernible in the figure); for the largest it is about 9.6 times faster.

In order to compare ML-GS and ML-AGS we magnify the lower section of figure 9, shown as

figure i0. Here we see that the adaptive technique also improves the multi-level method. Since,

however, the ML-GS method is already very efficient for this probleln, needing only between eight

and ten iterations to achieve convergence, there was little room left for improvement for ML-AGS.

Both ML schemes are still substantially faster than AGS.

Comparing the standard GS and ML-GS schemes, we see that Mthough these are problems of

very small size, the saving in computational effort of ML over GS is quite dramatic: a factor of 39

for the smallest and of 77 for the largest problems considered. It is also clear that the gap widens

as the probleln size is increased. It is results such as these, see [2] for more examples, that make

us confident that the multi-level method is a strong candidate as a steady-state solver for Markov
chains.

Figure ll shows the results of the four methods applied to the example stochastic Petri-net in

the original paper of Molloy [5], the structure of which is shown in figure 12. For this problem,

the computational work of GS grows extremely fast with problenl size, measured by the number

of tokens k in the initiM marking. The nmnber of states of the Markov chain varies from 506 to

23821. AGS is a distinct improvement, being already factors of 5 and 8 faster for 20 and 30 tokens

respectively. ML-GS is about twice as fast as AGS throughout and ML-AGS another factor of 2 to

4 faster still. Thus the overall improvement from the standard scheme to the best new scheme is a

factor of 40 for 30 tokens and increases as the problem grows larger.

Figure 13 shows the results of the four methods applied to a model of a processor cluster with

failures and repairs by Muppala and Trivedi [6] (figure 14). In the model jobs arriving can be pro-

cessed or rejected, depending on whether the system is down or up. A quorum of active processors

can be specified, which determines whether jobs can be accepted by the system or not. Enabling

flmctions (not shown) are used to define the model's behaviour. In addition, the size of the buffer

receiving the jobs can be varied. We chose to scale the size of the problem by varying the buffer

length between 8 and 64, yielding Marker chains with 81 ... 585 states. For this model, the opera-

tion count for GS grows sharply, but linearly with buffer size, whereas the other methods only grow

at a more modest rate. ML-AGS is superior to ML-GS by approximately 30% throughout; both

are about four times faster than AGS, despite the fact that this is an extremely small problem.

6. Conclusions

In this paper we have described and discussed the adaptive Gauss-Seidel method as a variation

of the well-known Gauss-Seidel solver for Markov chains. We also gave a brief description of the

multi-level algorithm which was recently introduced in [2] and which has been shown to often re-

quire significantly less computation time than the standard scheme for a number of test problems.

Experimental results showed that the introduction of an adaptive strategy can improve the perfor-

mance of the Gauss-Seidel method by almost an order of magnitude, and that it can also be used

to advantage as a component of the ML algorithm.

Possible extensions and modifications are to take the coefficients Pij into account when deciding

whether neighbouring states are to be inserted into the active set. This would more accurately

reflect the change in magnitude of the residual in those states, which would avoid insertion of states

with low effectiveness and thus lead to %rther computational savings. One might also consider



an adaptive SOR scheme, in which the basic AGS method is modified to allow overrelaxation.

A problem which we have yet to resolve satisfactorily is the automated choice of values for the

parameters e0 and Ae in the AGS scheme. Alternatively, one might consider a dynamic tuning of

e0 during the computation.

Further work will include the implementation of a "fully adaptive" multi-level solver in a manner

similar to Riide [7] - one in which the active set processing crosses the levels of the hierarchy. In

this way it is hoped that an adaptive relaxation which remains restricted to local areas of the chain

on one level initializes the active set on neighbouring levels to a corresponding subset of the states

on those levels. This may lead to substantial savings for the ML-AGS method, as restarting each

level with a flfll active set could be avoided.
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procedure st andard_Gaus s_S eidel

for { = 0 to n-I do
l

f_ '--- p--: j_¢/Pij /Sj

Figure 2: Standard Gauss-Seidel Algorithm

procedure hdaptive_Gauss_Seidel (_)

M = {sl....%}

while M # @

choose state si 6 M

M= M\si

t -= _i

for aimj#i, Pj_¢O
M=MUs.i

Figure 3: Adaptive Gauss-Seidel algorithm
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Figure 4: Birth-Death Markov Chain

>

O

rg]
o9

Z

Time

_ :'::':'" :''::::::' xo ...............
: " , • : ' : _ :_" : • _J,o ...... ": _ " '':: "': ..... _o ............ :1::::2 .....
' _ :: " ";_', ":_; ::,_o ........................ " ....: :_ i : :i¢, ........................................... :MUiMo................._' " _ , ' • ' , ,* ; iO ............................ "

_[ _'ii.:::.,, _ .................... ::::::::::: :

_i i [il!o.;:o°._i-::ii::!!!ii!iii::'::::iiii::: :'':''''::::i!ii!!!!ii

ii ii;i iiiiiiiiiiiiii iiiiiiiiiiiiiii!iiiiii :iiiiiii!!!ii;;;i!!!!!
Figure 5: Active set history



procedure ml (I)

if (l= O)

solve PlPl = 0

else

_t = es" (p_)

_,-i= Rl-,,I(_l)
ml(/- I)

pL, = _l-i/_l-,
P7 = 1_-l,_(pt*--,)

return

Figure 6: Multi-Level Algorithm

Figure 7: Simple Multiprocessor Example

Figure S: Marsan/Balbo/('onte Multiprocessor Model
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Figure 9: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve the

Marsan/Balbo/Conte problem.
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Figure 10: ComputationM work for ML-GS (C) and ML-AGS (D) to solve the Marsan-Balbo-Conte

problem (Magnification of part of figure 9).
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Figure 11: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve

IVlolloy's exanll)le SPN.
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Figure 12: Mol]oy's example SPN.
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Figure 13: Computational work for GS (A), AGS (B), ML-GS (C) and ML-AGS (D) to solve the
Muppala-Trivedi model.
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Figure 14: GSPN of Muppala-Trivedi
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